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Abstract. Motivated by the recent developments in digital diffusion networks, this work is de-
voted to the rates of convergence issue for a class of global optimization algorithms. By means of
weak convergence methods, we show that a sequence of suitably scaled estimation errors converges
weakly to a diffusion process (a solution of a stochastic differential equation). The scaling together
with the stationary covariance of the limit diffusion process gives the desired rates of convergence.
Application examples are also provided for some image estimation problems.
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1. Introduction

This work ascertains rates of convergence for a class of global optimization al-
gorithms. The primary motivation of our study stems from applications to image
estimation, namely, segmentation and restoration. Many of the image estimation
problems can be recast to global optimization problems. For such problems, one
often uses a simulated annealing-type algorithm to carry out the computation. Al-
though the simulated annealing prevents the iterates from being trapped at local
minima, straightforward sequential implementations can be too time-consuming
for practical purposes. Recently, based on modifications of the Langevin algorithm
and the Hopfield network, Wong (1991) suggested a diffusion network model.
One of the main ideas in that paper is the use of parallel processors for the de-
sired computation tasks, which allows speedup of the computation for optimization
tasks.

Wong’s approach can be outlined as follows. Let E : [0, 1]r �→ R be an
‘energy’ function defined on the hypercube [0, 1]r = [0, 1] × · · · × [0, 1]. Find
the global minimizer of E(·) by use of a neural network. Suppose that for all
t � 0, and for each α = 1, . . . , r, vα(t) ∈ [0, 1] is the state at node α at time
t and v = (v1, . . . , vr )

τ ∈ [0, 1]r is an r-dimensional column vector (zτ denotes
the transpose of z). By injecting noise into a Hopfield network, one obtains the
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dynamics. For α = 1, . . . , r, the system for the αth node is described by

vα(t) = g(uα(t)),

(1.1)

duα(t) = −∂E(v(t))
∂vα

dt + ãα(u(t))dwα(t),

where for α � r, {wα(·)} are independent, standard and real-valued, Brownian
motions, and ãα(·) and g(·) are appropriate functions. By choosing ãα(u(t)) =
[(2T )/g′(uα(t))]1/2, where g′ denotes the derivative of g, v(·) becomes a stationary
Markov process with stationary density

p∞(v) = (1/Z) exp(−(1/T )E(v)),

where Z is a normalizing factor

Z =
∫

exp(−(1/T )E(v))dv so that
∫

p∞(v)dv = 1.

Furthermore, by selecting f (x) = g′(g−1(x)), for each α � r,

dvα(t) = −f (vα(t))
∂E(v(t))

∂vα
dt + Tf ′(vα(t))dt +√

2Tf (vα(t))dwα(t),

(1.2)

where T goes to zero sufficiently slowly.
Wong’s diffusion machine is an analog one. One of the important features of

his model is that by proper choice of g(·), v(·) is stationary. Moreover, although
the process is defined on a bounded region, one need not worry about the reflecting
boundaries, and need only consider diffusions instead of reflected diffusions. This
is one of the most remarkable and significant contributions since it reduces much
of the complexity and difficulty in dealing with the boundaries. Although Wong’s
work gives the desired diffusion equations, the rates of convergence were not con-
sidered. Subsequent work in this direction was carried out by Kesidis (1995). It
was noted, however, that an analog implementation of the network does not appear
to be practical for large-scale problems.

Problems arising from image estimation are frequently of large scale. For ex-
ample, since a large number of pixels are involved and since each pixel is effect-
ively represented by a component of a vector, even for a moderate sized segmenta-
tion problem, the dimension of the computation tasks can be very large. Taking
advantages of Wong’s diffusion network and overcoming the difficulties of the
analog implementation, Cai et al. (1995) proposed a digital version of the diffu-
sion network. The basic idea lies in using a stochastic difference equation in lieu
of a continuous-time stochastic differential equation, which yields a discrete-time
stochastic dynamic system. To obtain the asymptotic properties, a crucial step is to
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show that the discrete iterates well approximate Wong’s diffusion machine. Taking
this into consideration, in our recent work Yin et al. (2000), we reveal the rela-
tionship of the discrete recursion and that of the continuous-time diffusion process
by means of weak convergence methods and martingale averaging techniques. We
have shown that by appropriate scaling, a suitably scaled sequence of the discrete
iterates converges to Wong’s analog diffusion machine. Nevertheless, the rates of
convergence for such algorithms have not been considered. In this work, we con-
tinue the study initiated in Yin et al. (2000) by taking up the rates of convergence
issues. Similar to that reference, we first deal with an algorithm defined on the
entire R

r . Subsequently, we restrict our attention to the r-dimensional hypercube
[0, 1]r = [0, 1] × · · · × [0, 1], which results in Wong’s diffusion machine. We also
examine variations of the algorithms including decreasing step size algorithms and
algorithms with noisy measurements. In our numerical experiments, we show that
our proposed numerical algorithms out perform the existing schemes. As shown
in our numerical experiments, our recursive algorithms are more accurate than the
existing procedures such as a maximum likelihood estimator. For example, in the
first example considered in the Section 5 to follow, using maximum likelihood
estimator, the error rate of approximation is 41%, whereas using our algorithm for
image segmentation, the error rate is only 6.49%, a substantial improvement.

The rest of the paper is arranged as follows. Section 2 begins with the formula-
tion of the algorithm. Section 3 proceeds with the rate of convergence analysis of
the digital diffusion network algorithm. Unlike the global optimization algorithms
treated in Yin (1999), the algorithm considered here uses constant step size ε

and a restarting device. We show that a proper scaling (a continuous-time inter-
polation) of the discrete sequence converges to a diffusion process. The scaling
factor together with the asymptotic covariance gives us the rates of convergence.
Section 4 deals with the corresponding decreasing step-size algorithms, algorithms
with additional contributing noise sources, and algorithms with iterates confined
to [0, 1]r . To illustrate the performance of the algorithm, Section 5 is devoted to a
number of examples from image estimation. Finally, we close the paper with a few
more remarks in Section 6. In the rest of the paper, for convenience, we use K to
denote a generic positive constant with the convention K +K = K and KK = K.

2. Recursive algorithm

Let E(·) : R
r �→ R, f (·) : R �→ R, and g(·) : R �→ R. In what follows, unless

otherwise noted, a Greek letter α or β denotes a component (or corresponding to
a processor) and ι, k and n denote the indices of the iterations. Without loss of
generality, we assume that each processor in the diffusion network controls one
component of the underlying vector. The treatment for the case that one processor
controls more than one components is the same. Inspired by the ideas in stochastic
approximation (see, for example, the up-to-date treatment of Kushner and Yin
(1997)) and the simulated annealing algorithm Gelfand and Mitter (1991), we pro-
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posed the following recursive algorithm with a periodic restarting device in Yin et
al. (2000). The idea is to partially reset the step-size sequences once a while, which
allows us to obtain the desired limit continuous-time diffusion easily. Meanwhile, it
is easily implementable and does not add any more complexity in the computation.
In the actual implementation of stochastic approximation algorithms, very often
one wishes to use a constant step size in lieu of a sequence of decreasing step sizes.
Constant step size algorithms have advantages in that, first, they are easily imple-
mentable, and second, such algorithms often provide better tracking properties. For
each ι � 0 and for a sequence {�ιn

k } (in either R
r or R), �ιn

k = �ιn+k. For α � r,
the algorithm for the diffusion network, which periodically (with period n) resets
the step-size sequences, takes the form: For 0 � k < n,

vιnα,k+1 = vιnα,k − aιnk f (v
ιn
α,k)

∂E(vιnk )
∂vα

+ cιnk f
′(vιnα,k) + bιnk

√
f (vιnα,k)W

ιn
α,k, (2.1)

where ε > 0 is a small parameter, A0 > 1, and

aιnk = ε,

bιnk = √
2ε/[√ln[εk + A0)], (2.2)

cιnk = ε/ ln[εk + A0].
In Yin et al. (2000), we proved the convergence of the algorithm by first obtaining
the weak convergence of an interpolated sequence of the iterates to the stochastic
differential equations

dvα(t) = − f (vα(t))
∂E(v(t))

∂vα
dt + 1

ln(t + A0)
f ′(vα(t))dt

+
√

2f (vα(t))

ln(t + A0)
dwα(t), α = 1, . . . , r.

(2.3)

We then used a result of Chiang et al. (1987) and established the desired conver-
gence. Note that in the case of v ∈ [0, 1]r , (2.3) is precisely Wong’s diffusion
machine with T (t) = 1/ ln(t + A0). In this work, we continue our investigation
by concentrating on the rates of convergence of the algorithm. In the analysis to
follow, it is often more convenient to work with vector-valued processes. We thus
use the following notation:

Wn
k = (Wn

1,k, . . . ,W
n
r,k)

τ ,

F (v) = diag(f (v1), . . . , f (vr)),

D(v) = (f ′(v1), . . . , f
′(vr))τ ,

&(v) = diag(
√
f (v1), . . . ,

√
f (vr)),

Ev(v) = ∇vE(v) =
(
∂E(v)
∂v1

, . . . ,
∂E(v)
∂vr

)τ

,
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where diag(d1, . . . , dr) denotes a diagonal matrix with diagonal entries d1 through
dr . As in Yin et al. (2000), for the analysis to follow, we fix ι. Without loss of
generality, take ι = 1 henceforth. In view of the vector notation (with ι = 1), (2.1)
and (2.3) can be written as

vnk+1 = vnk − εF (vnk )Ev(vnk ) + cnkD(vnk ) + bnk&(vnk )W
n
k , (2.4)

and

dv(t) = −F(v(t))∇E(v(t))dt + 1

ln(t + A0)
D(v(t))dt +

√
2f (v(t))

ln(t + A0)
dw(t),

(2.5)

respectively. The analysis in Yin et al. (2000) lies upon an interpolated process vε(·)
defined by vε(t) = vnk for t ∈ [εk, εk + ε). We have shown that vε(·) converges
weakly to the solution of (2.5).

REMARK 2.1. In (2.1), the step-size sequence {ank } is a constant ε. In what fol-
lows, for convenience and with a slight abuse of terminology, we refer to this
algorithm as a constant-step-size algorithm. If ank is a decreasing sequence, we refer
to the corresponding algorithm as a decreasing-step-size algorithm. There should
be no confusion from the context.

To proceed, let us make the following assumptions:
(A1) The functions f (·) and g(·) are continuously differentiable, and Evv (the

second partial derivative of the function E(·)) exists and is continuous and
bounded such that
(a) E(v) � 0 for all v ∈ R

r , minv E(v) = 0, and the set M = {v ∈
R

r; Ev(v) = 0} consists of finitely many isolated points, and there is
a global minimizer v∗ ∈ R

r ;
(b) f (z) � 0 for all z ∈ R, and f (·) is bounded with bounded derivative;
(c) the inverse g−1(·) exists and is continuously differentiable;
(d) f (z) = g′(g−1(z));
(e) vε(εtε+·) converges weakly to v∗, where tε is a sequence of real numbers

satisfying tε � 0 and εtε → ∞ as ε → 0.
(A2) For each α � r, {Wn

α,k} is a sequence of independent and identically distrib-
uted random variables such that
(a) EWn

α,k = 0;
(b) E(Wn

α,k)
2 = 1;

(c) for α �= β, Wn
α,k and Wn

β,k are independent.
(A3) There is a twice continuously differentiable Liapunov function U(·) : R

r �→
R for (2.3) such that
(a) U(v) � 0 for all v, U(v) → ∞ as |v| → ∞;
(b) |Uv(v)| � K(1+U 1/2(v)), |Uvv(·)| � K, and |Ev(v)| � K(1+U 1/2(v));
(c) Uτ

v (v)F (v)Ev(v) � λ̃U(v) for some λ̃ > 0 and v �∈ M.



334 G. YIN AND P. KELLY

REMARK 2.2. As was mentioned in the Introduction, for more generality, we first
consider the case E(·) being defined on R

r . Later E(·) defined on the hypercube
[0, 1]r is treated as a special case. Note also that the condition on {Wn

k } indic-
ates that the perturbing noise decouples among different processors, a property is
helpful in the analysis and actual computing. Since the noise sequence {Wn

k } is
added by us, it is at our disposal. Thus, it is more convenient to use a sequence of
uncorrelated random variables.

3. Rates of convergence

3.1. ERROR BOUNDS

The purpose of this section is to establish error bounds of the scaled sequences of
estimation errors. We prove the desired bounds by using a Liapunov function.

THEOREM 3.1. Suppose (A1)–(A3) are satisfied. Then for {vnk } defined by (2.1)
and for sufficiently large k,

EU(vnk ) = O(1), (3.1)

and

ln(εk + A0)EU(vnk ) = O(1). (3.2)

Proof. Although generally v∗ �= 0, for notational simplicity, we assume that
v∗ = 0 in the proof of this theorem. We first prove (3.1). Denote the conditional
expectation with respect to the σ -algebra generated by {Wn

j ; j < k} by En
k . Using

the Liapunov function U(·) and En
kW

n
k = 0, we have

En
kU(vnk+1) − U(vnk )

� Uτ
v (v

n
k )

(
−εF (vnk )Ev(vnk ) + ε

ln(εk + A0)
D(vnk )

)
+ Kε2

(
F(vnk )Ev(vnk )

)τ (∫ 1

0
Uvv(v

n
k + s(vnk+1 − vnk ))ds

) (
F(vnk )Ev(vnk )

)
+ Kε2Dτ(vnk )

[ln(εk + A0)]2

(∫ 1

0
Uvv(v

n
k + s(vnk+1 − vnk ))ds

)
D(vnk )

+ Kε

ln(εk + A0)
tr

(∫ 1

0
Uvv(v

n
k + s(vnk+1 − vnk ))ds

× [En
kW

n
k W

n,τ
k ][&τ (vnk )&(vnk )]

)
. (3.3)

In view of (A2),

En
kW

n
k W

n,τ
k = I, (the identity matrix).
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Thus the boundedness of f (·) and Uvv(·) implies that∣∣∣∣ 2ε

ln(εk + A0)
tr

(∫ 1

0
Uvv(v

n
k + s(vnk+1 − vnk ))ds

× [En
kW

n
k W

n,τ
k [&τ (vnk )&(vnk )]

)∣∣∣∣ � K
ε

ln(εk + A0)
, (3.4)

where tr(A) denotes the trace of A. The boundedness of f ′(·) yields that∣∣∣∣ ε2Dτ(vnk )

[ln(εk + A0)]2

(∫ 1

0
Uvv(v

n
k + s(vnk+1 − vnk ))ds

)
D(vnk )

∣∣∣∣
� K

ε2

[ln(εk + A0)]2
. (3.5)

Moreover, we also have∣∣∣∣ε2 (F(vnk )Ev(vnk )
)τ (∫ 1

0
Uvv(v

n
k + s(vnk+1 − vnk ))ds

) (
F(vnk )Ev(vnk )

)∣∣∣∣
� Kε2(1 + U(vnk )). (3.6)

Combining (3.4)–(3.6), the last three terms in (3.3) are bounded by

O(ε2)U(vnk ) + O

(
ε2 + ε2

[ln(εk + A0)]2
+ ε

ln(εK + A0)

)
= O(ε2)U(vnk ) + O

(
ε

ln(εK + A0)

)
. (3.7)

If vnk �∈ M, Uτ
v (v

n
k )F (vnk )Ev(vnk ) � λ̃U(vnk ) by (A3) (c). Consequently, whenever

vnk �∈ M, there is some λ > 0,

−Uτ
v (v

n
k )F (vnk )Ev(vnk ) � −λU(vnk ). (3.8)

It follows from (A1) (a), there is a constant vector ẽ ∈ R
r such that if vnk ∈ M,

vnk + εẽ �∈ M. As a result, by (A3) (c),

− Uτ
v (v

n
k )F (vnk )Ev(vnk )

= −Uτ
v (v

n
k )F (vnk )Ev(vnk )I{vnk �∈M} − Uτ

v (v
n
k )F (vnk )Ev(vnk )I{vnk∈M}

� −λU(vnk )I{vnk �∈M} − Uτ
v (v

n
k + εẽ)F (vnk + εẽ)Ev(vnk + εẽ)I{vnk∈M}

+ Uτ
v (v

n
k + εẽ)F (vnk + εẽ)Ev(vnk + εẽ)I{vnk∈M}. (3.9)

In addition,

− Uτ
v (v

n
k + εẽ)F (vnk + εẽ)Ev(vnk + εẽ)I{vnk∈M}

� −λU(vnk + εẽ)I{vnk∈M}

� −λU(vnk )I{vnk∈M} +
∣∣∣∣εẽ(∫ 1

0
Uτ

v (v
n
k + sεẽ)ds

)
I{vnk∈M}

∣∣∣∣
� −λU(vnk )I{vnk∈M} + O(ε)(1 + U(vnk )), (3.10)
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and for the last term in (3.9),∣∣Uτ
v (v

n
k + εẽ)F (vnk + εẽ)Ev(vnk + εẽ)I{vnk∈M}

∣∣
=
∣∣∣∣εẽ(∫ 1

0
Uτ

v (v
n
k + sεẽ)F (vnk + εẽ)Ev(vnk + εẽ)ds

)
v

I{vnk∈M}
∣∣∣∣

� O(ε)(1 + U(vnk )). (3.11)

Thus (3.8), (3.9), (3.10), and (3.11) lead to

−Uτ
v (v

n
k )F (vnk )Ev(vnk ) � −λU(vnk ) + O(ε)(1 + U(vnk )).

Finally,∣∣∣∣ ε

ln(εk + A0)
Uτ

v (v
n
k )D(vnk )

∣∣∣∣ � K
ε

ln(εk + A0)
(1 + U(vnk )). (3.12)

Using (3.3)–(3.12), we arrive at

En
kU(vnk+1)

� (1 − λε)U(vnk ) + O(ε2)U(vnk ) + O

(
ε

ln(εk + A0)

)
(1 + U(vnk ))

� (1 − λ0ε)U(vnk ) + O

(
ε

ln(εk + A0)

)
EU(vnk ) + O

(
ε

ln(εk + A0)

)
,

where 0 < λ0 < λ. Iterating on the above inequality and taking expectation, we
obtain

EU(vnk+1) �(1 − λ0ε)
kEU(vn0)

+ K

k∑
j=0

ε(1 − λ0ε)
k−j

ln(εj + A0)
+ K

k∑
j=0

ε(1 − λ0ε)
k−j

ln(εj + A0)
EU(vnj ).

(3.13)

Denoting

µn
k = (1 − λ0ε)

kEU(vn0) + K

k∑
j=0

ε

ln(εj + A0)
(1 − λ0ε)

k−j ,

the Gronwall inequality then yields

EU(vnk+1) � µn
k exp

K

k∑
j=0

ε

ln(εj + A0)
(1 − λ0ε)

k−j

 , (3.14)

and hence (3.1) follows.
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Next, we prove (3.2). In view of (3.14), we have

ln(εk + A0)EU(vnk+1)

� ln(εk + A0)µ
n
k exp

K

k∑
j=0

ε

ln(εj + A0)
(1 − λ0ε)

k−j

 .

As a result, to obtain the desired bound, it suffices to show ln(εk+A0)µ
n
k = O(1).

To this end, it suffices to show

ln(εk + A0)(1 − λ0ε)
kEU(vn0 ) = O(1)

ln(εk + A0)

k∑
j=0

ε

ln(εj + A0)
(1 − λ0ε)

k−j = O(1). (3.15)

The first inequality in (3.15) is easily verified by observing the exponential decay
property of (1 − λ0ε)

k. As for the second one, using a summation by parts,

ln(εk + A0)

k∑
j=0

ε

ln(εj + A0)
(1 − λ0ε)

k−j

=
k∑

j=0

ε(1 − λ0ε)
k−j + ln(εk + A0)

×
k−1∑
j=0

(
1

ln(εj + A0)
− 1

ln(ε(j + 1) + A0)

) j∑
i=0

ε(1 − λ0)
k−i

� O(1) + K

k−1∑
j=0

ln
(

1 + 1
j

)
(ln(εj + A0))

2

j∑
i=0

ε(1 − λ0ε)
k−i . (3.16)

Upon using

ln(1 + x) � x for any real x > 0, and
j∑

i=0

(1 − λ0ε)
k−i � j (1 − λ0ε)

k−j ,

(3.16) yields that for some κ0 with 0 < κ0 < 1,

ln(εk + A0)

k∑
j=0

ε

ln(εk + A0)
(1 − λ0ε)

k−j

� O(1) + κ0 ln(εk + A0)

k∑
j=0

ε(1 − λ0ε)
k−j

ln(εj + A0)
,



338 G. YIN AND P. KELLY

which in turn leads to

(1 − κ0) ln(εk + A0)

k∑
j=0

ε(1 − λ0ε)
k−j

ln(εj + A0)
� O(1). (3.17)

Finally,

ln(ε(k + 1) + A0)EU(vnk+1) = ln(ε(k + 1) + A0)

ln(εk + A0)

(
ln(εk + A0)EU(vnk+1)

)
.

The boundedness of ln(ε(k + 1) + A0)/ ln(εk + A0) and (3.17) then yield (3.2). �

3.2. NOTION OF WEAK CONVERGENCE

To obtain further limit results, we use the methods of weak convergence. The notion
of weak convergence of probability measures is a substantial extension of conver-
gence in distribution, and is a powerful machinery for a wide range of applications.
For completeness and reference, we mention some of the basic definitions and
notation for weak convergence. Let Xn and X be R

r -valued random variables. We
say that Xn converges weakly to X iff for any bounded and continuous function
ψ(·), Eψ(Xn) → Eψ(X). Similar to the notion of compactness, we often wish to
say that ‘no probabilities are lost’ for a sequence. Such a notion is referred to as
tightness. The sequence {Xn} is tight iff for each η > 0, there is a compact set Kη

such that P(Xn ∈ Kη) � 1 − η for all n. The definitions of weak convergence and
tightness extend to random variables in a metric space. On a complete separable
metric space, tightness is equivalent to relative compactness. This is known as
Prohorov’s Theorem. By using this theorem, we are able to extract convergent
subsequences once tightness is verified. In the weak convergence analysis, it is
more convenient to work with Dr[0,∞), the space of functions that are right con-
tinuous, have left limits, endowed with the Skorohod topology (Ethier and Kurtz,
1986, Kushner and Yin, 1997). Moreover, for convenience, we often use a device
known as Skorohod representation. Suppose that Xn converges weakly to X. Then
enlarging the probability space if necessary, the Skorohod representation allows
us to find X̃n and X̃ such that they have the same distribution as that of Xn and
X, respectively, and that X̃n → X̃ w.p.1. In what follows, when we use such a
device, without loss of generality and for notational simplicity, we will not use the
tilde symbol. The application of weak convergence methods usually requires first
tightness be proved and then the limit process be characterized.

Define

νnk = √
ln(εk + A0)[vnk − v∗]. (3.18)

The proof presented in Section 3.1 leads to:
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COROLLARY 3.2. Assume the conditions of Theorem 3.1. If the Liapunov func-
tion U(·) is locally (near v∗) quadratic, then there is a sequence of real numbers,
{Mε}, satisfying Mε � tε such that {(vnk − v∗), k � Mε} is tight or bounded in
probability. That is for any η > 0, there exists a Kη such that

P(|vnk − v∗| � Kη) < η for all k � Mε.

REMARK 3.3. In what follows, we work with the sequence {vnk+Mε
−v∗}. Thus all

the interpolations etc. should be defined for the indices k + Mε etc. Nevertheless,
for notational simplicity, we shall still write vnk throughout.

Define a piecewise constant interpolation of νnk as

νε(t) = νnk for t ∈ [εk, ε(k + 1)).

In view of 3.3, what we are really working with is

νε(t) = νnk+Mε
for t ∈ [ε(k + Mε), ε(k + Mε) + ε).

Nevertheless, the notation without Mε is much simpler as can be seen in what
follows.

3.3. DIFFUSION LIMIT

Note that E(v∗) = 0. Using (2.4) with ι = 1, define

H = (∂/∂v)(F (v∗)Ev(v∗)), and ṽnk = vnk − v∗. (3.19)

We linearize the recursion about v∗. It leads to

ṽnk+1 =ṽnk − εH ṽnk + cnkD(v∗) + cnk [D(vnk ) − D(v∗)] + bnk&(v∗)Wn
k

+ bnk [&(vnk ) − &(v∗)]Wn
k + o(ε)O

(|̃vnk |) ,
where the last term comes from the remainder in the Taylor expansion. Using the
definition (3.18), the above equation can be written as

νnk+1 =
√

ln(ε(k + 1) + A0)

ln(εk + A0)
νnk − ε

√
ln(ε(k + 1) + A0)

ln(εk + A0)
Hνnk

+ ε√
ln(εk + A0)

√
ln(ε(k + 1) + A0)

ln(εk + A0)
D(v∗)

+ √
2ε

√
ln(ε(k + 1) + A0)

ln(εk + A0)
&(v∗)Wn

k

+ ε√
ln(εk + A0)

√
ln(ε(k + 1) + A0)

ln(εk + A0)
[D(vnk ) − D(v∗)]
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+ √
2ε

√
ln(ε(k + 1) + A0)

ln(εk + A0)
[&(vnk ) − &(v∗)]Wn

k

+
√

ln(ε(k + 1) + A0)

ln(εk + A0)
o(ε)O

(
ε|νnk |

)
. (3.20)

To carry out the analysis, use a truncation device (Kushner and Yin, 1997, p.
248). That is, for an arbitrary N > 0, denote SN = {x; |x| � N} and let νε,N(·) be
the process that is equal to νε(·) up until the first exit from SN and that

lim
K→∞

lim sup
ε→0

P(sup
t�T

|νε,N(t)| � K) = 0, for each T < ∞ and N < ∞.

Let a truncation function qN(·) be defined as

qN(x) =
{

1, |x| � N,

0, |x| > N + 1.

In lieu of (3.20), we work with a truncated process. The corresponding recursion
is given by

ν
n,N
k+1 =

√
ln(ε(k + 1) + A0)

ln(εk + A0)
ν
n,N
k − ε

√
ln(ε(k + 1) + A0)

ln(εk + A0)
Hν

n,N
k

+ ε√
ln(εk + A0)

√
ln(ε(k + 1) + A0)

ln(εk + A0)
D(v∗)

+ √
2ε

√
ln(ε(k + 1) + A0)

ln(εk + A0)
&(v∗)Wn

k

+ ε√
ln(εk + A0)

√
ln(ε(k + 1) + A0)

ln(εk + A0)
[D(v

n,N
k ) − D(v∗)]qN(νn,Nk )

+ √
2ε

√
ln(ε(k + 1) + A0)

ln(εk + A0)
[&(v

n,N
k ) − &(v∗)]qN(νn,Nk )Wn

k

+
√

ln(ε(k + 1) + A0)

ln(εk + A0)
o(ε)O

(
|νn,Nk |

)
qN(ν

n,N
k ). (3.21)

In the above, we have also used the truncation v
n,N
k for vnk .

REMARK 3.4. Note that for each N , {νn,Nk } and {vn,Nk } are uniformly bounded.
That is, the bound may depend on N , but it is independent of k. This fact will be
used crucially in what follows.
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Our plan is: We first establish the tightness of {νε,N(·)}. Then we work with
{νε,N(·)}, and derive its weak convergence. Finally, we let N → ∞ to conclude the
proof.

3.3.1. Tightness of {νε,N(·)}
Note that νε,N(·) is in Dr[0,∞). We state a theorem that gives the tightness of this
sequence of functions.

THEOREM 3.5. Assume the conditions of Corollary 3.2 hold. Then {νε,N(·)} is
tight in Dr[0,∞).

Proof. We use the tightness criteria due to Kurtz (see Ethier and Kurtz (1986,
p.137), and Kushner (1984, p.47) to obtain the desired result. Use Eε

t and En
k to

denote the conditional expectations with respect to the σ -algebras generated by
{νε,N(u), u � t} and {νε,N0 ,Wn

j , j < k}, respectively.
Note that√

ln(ε(k + 1) + A0)

ln(εk + A0)
= 1 + O

(
ln (1 + ε/(εk + A0))

ln(εk + A0)

)
. (3.22)

Thus (3.21) can be written as

ν
n,N
k+1 =ν

n,N
k − εHν

n,N
k + ε√

ln(εk + A0)
D(v∗) + √

2ε&(v∗)Wn
k

+ ε√
ln(εk + A0)

[D(v
n,N
k ) − D(v∗)]qN(νn,Nk )

+ √
2ε[&(v

n,N
k ) − &(v∗)]qN(νn,Nk )Wn

k

+ o(ε)O
(
|νn,Nk |

)
qN(ν

n,N
k ) + en. (3.23)

Comparing (3.20) with (3.23), we see that en collects all terms involving

O

(
ln (1 + ε/(εk + A0))

ln(εk + A0)

)
due to the expansion (3.22) so it is asymptotically unimportant in the sense that

�(t+s)/ε�−1∑
j=�t/ε�

ej → 0 in probability uniformly in t. (3.24)

In the above, �z� denotes the integer part of z ∈ R. However, for simplicity, in what
follows, we will not use the �·� notation.
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Using (3.23) and the interpolation,

νε,N(t + s) − νε,N(t) = −ε

(t+s)/ε−1∑
j=t/ε

Hν
n,N
j +

(t+s)/ε−1∑
j=t/ε

ε√
ln(εj + A0)

D(v∗)

+ √
2ε

(t+s)/ε−1∑
j=t/ε

&(v∗)Wn
j +

(t+s)/ε−1∑
j=t/ε

o(ε)O
(
|νn,Nj |

)
qN(ν

n,N
j )

+
(t+s)/ε−1∑
j=t/ε

ε√
ln(εj + A0)

[D(v
n,N
j ) − D(v∗)]qN(νn,Nj )

+ √
2ε

(t+s)/ε−1∑
j=t/ε

[&(v
n,N
j ) − &(v∗)]qN(νn,Nj )Wn

j +
(t+s)/ε−1∑
j=t/ε

ej . (3.25)

Since the last term above goes to 0 in probability by virtue of (3.24), we shall
disregard it in what follows and concentrate on the rest of the terms only.

By virtue of the boundedness of νn,Nj , for s sufficiently small,

Eε
t

∣∣∣∣∣∣ε
(t+s)/ε−1∑
j=t/ε

Hν
n,N
j

∣∣∣∣∣∣
2

� ε2
(t+s)/ε−1∑
j=t/ε

(t+s)/ε−1∑
k=t/ε

Eε
t |H |2|νn,Nj |2

� K

(
t + s

ε
− t

ε

)2

ε2 = Ks2 � Ks.

Similarly,

Eε
t

∣∣∣∣∣∣
(t+s)/ε−1∑
j=t/ε

ε√
ln(εj + A0)

[D(v
n,N
j ) − D(v∗)]qN(νn,Nj )

∣∣∣∣∣∣
2

� Ks,

and

Eε
t

∣∣∣∣∣∣
(t+s)/ε−1∑
j=t/ε

o(ε)O
(
|νn,Nj |

)
qN(ν

n,N
j )

∣∣∣∣∣∣
2

� Ks.

Since there is nothing random in the second term on the right-hand side of (3.25),∣∣∣∣∣∣
(t+s)/ε−1∑
j=t/ε

ε√
ln(εj + A0)

D(v∗)

∣∣∣∣∣∣
2

� Ks.

By virtue of the independence of Wn
j ,

Eε
t

∣∣∣∣∣∣√2ε
(t+s)/ε−1∑
j=t/ε

&(v∗)Wn
j

∣∣∣∣∣∣
2

� Kε

(t+s)/ε−1∑
j=t/ε

|&(v∗)|2EW
n,τ
j Wn

j � Ks,
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and similarly,

Eε
t

∣∣∣∣∣∣√2ε
(t+s)/ε−1∑
j=t/ε

[&(v
n,N
k ) − &(v∗)]qN(νn,Nk )Wn

j

∣∣∣∣∣∣
2

� Kε

(t+s)/ε−1∑
j=t/ε

EW
n,τ
j Wn

j � Ks.

Consequently, combining the estimates obtained thus far,

Eε
t

∣∣νε,N(t + s) − νε,N(t)
∣∣2 � Ks.

Therefore, for any δ > 0 (recall that 0 < s < δ),

lim
δ→0

lim sup
ε→0

E[Eε
t

∣∣νε,N(t + s) − νε,N(t)
∣∣2] = 0.

The tightness of {νε,N(·)} is proved. �

3.3.2. Weak convergence of νε,N(·)
We begin with some preliminary calculations. First let us state a lemma, which
picks out the effective terms and discards the asymptotically unimportant terms in
(3.25).

LEMMA 3.6. Under the conditions of Theorem 3.5,

νε,N(t + s) − νε,N(t) = − ε

(t+s)/ε−1∑
j=t/ε

Hν
n,N
j

+
(t+s)/ε−1∑
j=t/ε

ε√
ln(εj + A0)

D(v∗) (3.26)

+ √
2ε

(t+s)/ε−1∑
j=t/ε

&(v∗)Wn
j + o(1),

where o(1) → 0 in probability uniformly in t as ε → 0.

REMARK 3.7. In view of the lemma, we need only concentrate on the first three
terms in (3.26). The rest of the terms in (3.25) are of higher order and can be
dropped in the asymptotic analysis.
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Proof. We need only show that the last four terms in (3.25) are asymptotically
unimportant. First, by the continuity and the boundedness of f ′(·), D(·) is bounded
and continuous, so

E

∣∣∣∣∣∣
(t+s)/ε−1∑
j=t/ε

ε√
ln(εj + A0)

[D(v
n,N
j ) − D(v∗)]qN(νn,Nj )

∣∣∣∣∣∣
2

�
(t+s)/ε−1∑
j=t/ε

(t+s)/ε−1∑
k=t/ε

ε2

√
ln(εj + A0)

√
ln(εk + A0)

× E
1
2 |[D(v

n,N
j ) − D(v∗)]qN(νn,Nj )|2E 1

2 |[D(v
n,N
k ) − D(v∗)]qN(νn,Nk )|2

→ 0 as ε → 0.

By the continuity and the boundedness of f (·), &(·) is bounded and continuous.
Owing to the independence of {Wn

j },

E

∣∣∣∣∣∣√2ε
(t+s)/ε−1∑
j=t/ε

[&(v
n,N
j ) − &(v∗)]qN(νn,Nj )Wn

j

∣∣∣∣∣∣
2

� 2ε
(t+s)/ε−1∑
j=t/ε

E|&(v
n,N
j ) − &(v∗)|2(qN(νn,Nj ))2En

j |Wn
j |2

→ 0 as ε → 0.

Moreover,

E

∣∣∣∣∣∣
(t+s)/ε−1∑
j=t/ε

o(ε)O(|νn,Nj |)qN(νn,Nj )

∣∣∣∣∣∣
2

�
(t+s)/ε−1∑
j=t/ε

(t+s)/ε−1∑
k=t/ε

o(ε2)O(E
1
2 |νn,Nj qN(ν

n,N
j )|2E 1

2 |νn,Nk qN(ν
n,N
k )|2)

→ 0 as ε → 0.

The lemma is thus proved. �
Next, we state another lemma that gives a functional central limit theorem. It is a
variant of the Donsker’s invariance theorem.

LEMMA 3.8. Define

wε(t) = √
ε

t/ε−1∑
j=0

Wn
j .

Then wε(·) converges weakly to a standard Brownian motion w(·).
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Proof. This follows from a standard argument. See Chapter 10.6 of Kushner and
Yin (1997). We omit the details here. �
REMARK 3.9. In view of the familiar Slutsky theorem,

√
2&(v∗)wε(t) converges

weakly to a Brownian motion
√

2&(v∗)w(·) such that the covariance of the limit
Brownian motion is 2&(v∗)&τ (v∗)t . It follows from 3.8,

√
2ε

(t+s)/ε−1∑
j=t/ε

&(v∗)Wn
j converges weakly to

√
2&(v∗)

∫ t+s

t

dw(u).

To proceed, choose a sequence mε such that mε → ∞ but δε = εmε → 0 as
ε → 0. Rewrite the first term on the right-hand side of (3.26) as

− ε

(t+s)/ε−1∑
j=t/ε

Hν
n,N
j = −

t+s∑
lδε=t

δε
1

mε

lmε+mε−1∑
j=lmε

Hν
n,N
lmε

−
t+s∑
lδε=t

δε
1

mε

lmε+mε−1∑
j=lmε

H [νn,Nj − ν
n,N
lmε

]. (3.27)

Using the techniques in Chapter 8 of Kushner and Yin (1997), it can be shown
that the first term on the second line of (3.27) converges to

−
∫ t+s

t

HνN(u)du,

whereas the second term goes to 0 in probability uniformly in t . Similarly, it can
be shown that the term on the second line of (3.26) has the limit∫ t+s

t

(1/
√

ln(u + A0))D(v∗)du.

We summarize this into the following theorem.

THEOREM 3.10. In addition to the conditions of Theorem 3.5, assume that −H

defined in (3.19) is a stable matrix. Then νε,N(·) converges weakly to νN(·) that is
the solution of the stochastic differential equation

dνN =
(

−HνN + 1√
ln(t + A0)

D(v∗)
)
dt + √

2&(v∗)dw.

3.3.3. The Limit ν(·)
In the previous section, we have treated νε,N(·), a truncated process of νε(·). In this
section, we obtain the convergence of the original process νε(·) by letting N → ∞.
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The argument here is similar to that of Corollary to Theorem 3.2 of Kushner (1984).
Let Pν(0)(·) and PN(·) be the measures induced by ν(·) and νN(·), respectively.
Since the differential equation (3.28) is linear, it has a unique solution for each
initial condition, so the measure Pν(0)(·) is unique. For each T < ∞, Pν(0)(·) agrees
with PN(·) on all Borel subsets of the set of paths in Dr[0,∞) whose values are
in SN for t � T . Note that

Pν(0)

(
sup
t�T

|ν(t)| � N

)
→ 1 as N → ∞.

This together with the weak convergence of νε,N(·) to νN(·) yields that νε(·) con-
verges weakly to ν(·). We thus have:

THEOREM 3.11. Under the conditions of Theorem 3.10, νε(·) converges weakly
to ν(·) that is the solution of the stochastic differential equation

dν =
(

−Hν + 1√
ln(t + A0)

D(v∗)
)
dt + √

2&(v∗)dw, (3.28)

where H is given by (3.19).

REMARK 3.12. Note that the stationary covariance of the diffusion given by
(3.28) is

A = 2
∫ ∞

0
exp (−Ht)&(v∗)&τ (v∗) exp (−Hτ t) dt.

The stability of −H implies that the integral above is well defined. Thus loosely
vnk − v∗ is asymptotically normally distributed with mean zero and covariance
(1/ ln(εk + A0))A (see also Chapter 10 of Kushner and Yin, 1997, for related dis-
cussion on stochastic approximation algorithms). The scaling factor together with
the stationary covariance of the diffusion (3.28) gives us the rate of convergence
result.

4. Modifications and extensions

This section considers several extensions of the rates of convergence obtained.
First, we look at the case that the energy function is defined on the hypercube.
Next, we examine decreasing step-size algorithms with proper scaling. Finally, we
consider algorithms involving additional sources of noise.

4.1. ALGORITHMS WITH E(·) DEFINED ON [0, 1]r
Consider the same algorithm (2.1), but make the modifications that E is defined
on [0, 1]r and that {Wn

k } is a sequence of bounded random variables. Then the
convergence can still be obtained, and the rate of convergence remains to be the
same as derived in the last theorem.
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THEOREM 4.1. Under the conditions of Theorem 3.11 with the modification that
E(·) : [0, 1]r �→ R, that v∗ ∈ (0, 1)r , that {Wn

k } is bounded with probability 1, that
f (0) = f (1) = 0, and that Dr[0, 1] replaces Dr [0,∞), then the conclusion of
Theorem 3.11 continues to hold.

Since the proof is similar to that of Theorem 3.11, we omit the details. The
assumption f (0) = f (1) = 0 guarantees that the limit diffusion v(·) (that is the
limit of the interpolation of vnk ) is stationary; see Wong (1991). We also require v∗
in the interior of the hypercube. This is mainly for the rate of convergence analysis.
As was proved in Yin et al. (2000), we can ensure that all the iterates belong to
[0, 1]r . Since [0, 1]r is compact, by virtue of (A1), f (·), f ′(·), and (∂/∂vα)E(·)
are all bounded uniformly on [0, 1]r . It turns out that for ε sufficiently small, if
vιnk ∈ [0, 1], then vιnk+1 ∈ [0, 1].

REMARK 4.2. In the image estimation problems that we are interested in, we
often choose

g(u) = 1

2
+ 1

π
arctan u

f (v) = 1

π
cos2 π(v − 0.5)

and choose E(v) to be a quadratic function. Then the conditions posed are all
satisfied.

4.2. DECREASING STEP-SIZE ALGORITHMS

First consider a decreasing step-size algorithm of the form

vιnk+1 =vιnk − aιnk F (vιnk )Ev(vιnk )
+ cιnk D(vιnk ) + bιnk &(vιnk )W

ιn
k , (4.1)

where

aιnk = 1/(ιn + k)γ ,

bιnk = √
2aιn+k/[

√
ln((∈ +k)1−γ − (ιn)1−γ + A0)], (4.2)

cιnk = aιnk / ln[(ιn + k)1−γ − (ιn)1−γ + A0],
with A0 > 1 and 1/2 < γ < 1. Again, let us fix ι = 1. In this case, we define

νnk =
√

ln(k1−γ + A0)[vnk − v∗], (4.3)
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and

tnk =
k∑

i=1

A

(i + n)γ
,

m(t) = max{k; tnk � t},
ν0(t) = νnk for t ∈ [tn, tn+1),

ν̃k(t) = ν0(t + tn).

THEOREM 4.3. Under the conditions of Theorem 3.11 with the decreasing step
sizes given by (4.2), the conclusion of Theorem 3.11 continues to hold with νε(·)
replaced by ν̃k(·)
REMARK 4.4. We can obtain another decreasing step-size algorithm (4.1) by
changing the step sizes given in (4.2) to

aιnk = 1/(ιn + k),

bιnk = √
2aιn+k/[

√
ln ln(k + A0)], (4.4)

cιnk = aιnk / ln ln(k + A0).

In this case (with ι = 1), define

tnk =
k∑

i=1

1

(i + n)
,

νnk = √
ln ln(k + A0)[vnk − v∗].

(4.5)

Then the desired result still holds.

4.3. NOISY MEASUREMENTS

In applications, additional noise other than the added disturbance {Wιn
k } frequently

arises. Such random errors may be due to digitization or noisy observations or
a combination of these. Let the additional noise be denoted by ξ ιnk . Then the al-
gorithm can be modified accordingly as follows:

vιnk+1 = vιnk − aιnk F (vιnk )Ev(vιnk ) + aιnk ξ
ιn
k + cιnk D(vιnk ) + bιnk &(vιnk )W

ιn
k , (4.6)

where {aιnk }, {bιnk } and {cιnk } are either decreasing step-size sequences or constant
step-size sequences defined previously. In Yin et al. (2000), we have established
the convergence of the algorithm under additional contributing noise. Using the
methods developed in this work, we can obtain the rates of convergence of such
algorithms. The analysis is similar, and the result is given as follows. Again, for
simplicity, we take ι = 1.
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THEOREM 4.5. For the constant-step algorithm with step-size sequence given by
(2.2) (resp. the decreasing-step algorithm with step size (4.2)), in addition to the
assumptions of Theorem 3.11 (resp. Theorem 4.3), assume that {ξnk } is a stationary
ϕ-mixing process independent of {Wn

k } such that
(a) Eξnk = 0, E|ξnk |2 < ∞;
(b) there exists a sequence of nonnegative real numbers {ρn} such that for each

k � j ,

E1/2|Ejξ
n
k − Eξnk |2 � ρk−j , and

∑
k

ρk < ∞,

where Em denotes the conditioning on the σ -algebra Fn
m generated by {vn0 , ξni ,

Wn
i ; i < m}.

Then the conclusions of Theorem 3.11 (resp. Theorem 4.3) continue to hold.

REMARK 4.6. Roughly, the mixing condition requires {ξnj , j < l} and {ξnj , j �
l+k} be independent as k → ∞. For definition and discussion of mixing processes,
see Ethier and Kurtz (1986, p. 345). It is well known that a stationary ϕ-mixing
process is ergodic. Thus, the condition for the noise {ξnk } implies that

1

k

k+m−1∑
j=m

Emξ
n
j → 0 in probability.

Thus the condition needed for convergence in Yin et al. (2000) is verified. As
observed in Yin (1999), this observation noise contributes nothing to the limit
stochastic differential equation in the rate of convergence analysis. Thus the most
important scaling factor comes from the step of the perturbing noise term not from
the noisy observation or measurements.

5. Applications to image processing

In principle, a diffusion network can be used to solve any optimization problem
put in the form of minimization of an energy function over [0, 1]r . Since the net-
work performs parallel computations, it is potentially most useful for large-scale
problems involving many variables. Examples of such problems arise in image
estimation, including segmentation (i.e., a partition of an image into a small num-
ber of classes) and restoration (i.e., recovery of (continuous-valued) image data
from corrupted observations). It is noted in Manjunath et al. (1990) that for images
using Markov Random Field (MRF) models, segmentation can be accomplished
by minimizing an appropriate function (a Gibbs distribution energy function) over
the discrete set {0, 1}r . In Yin et al. (2000), we used ideas similar to those in
Manjunath et al. (1990) to develop diffusion networks (operating over [0, 1]r )
for performing image segmentation and restoration. The examples in Yin et al.
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(2000) used networks having a fixed step size (without a periodic restart). The
fixed step-size results in Section 3 of this paper indicate that a larger step leads to
faster convergence (because of the scaling factor in Remark 3.12), but of course,
a larger step also leads to a greater approximation error. The results of Section
4.2 indicate that, when following the decreasing step-size schedule of (4.2), there
is a slower convergence rate for large k (i.e., when k1−γ < εk), but one would
also expect eventually to achieve less approximation error than for fixed step sizes.
These tradeoffs suggest that both rapid convergence and small approximation error
could be obtained by using initially large but decreasing step sizes combined with
a periodic restart. In this section we first compare fixed and decreasing step sizes
for segmentation of a noisy two-region image, with test results showing faster con-
vergence to a better result in the case of decreasing step sizes with periodic restart.
We then consider a problem of joint segmentation and restoration of a blurred (for
a precise definition of blur, see Section 5.2 of this paper, in particular (5.2)) and
noisy image, with test results showing slightly better performance for decreasing
step sizes than for fixed steps.

5.1. SEGMENTATION OF A NOISY TWO-REGION IMAGES

We first define an image model as in Yin et al. (2000). Let G denote the K × L

lattice of pixels on which images are defined, and let the pixels be indexed by
I = 1, . . . , KL. Suppose that the desired image consists of M constant-intensity
regions. Let {µm : m = 1, . . . ,M} denote the set of region intensities. We define
X = {X(I) : I = 1, . . . , KL} to be the field of region labels. That is, each X(I)

takes a value in the set {1, . . . ,M}; and if X(I) = x(I), then the mean intensity
at pixel I is µx(I). To impose on the model the spatial continuity inherent in image
regions, we assume that X has a Gibbs distribution in the form

P(X = x) ∝ exp

(∑
c∈C

{Vc(x(m) : m ∈ c)}
)

where c is a subset of {1, . . . , KL} called a clique; C is the collection of all cliques;
and Vc(·) is some function of x restricted to c. Let ηI = {m : m is in a clique with I}
(ηI is called the neighborhood of I). (For example, a commonly-used image model
is

P(X = x) ∝ exp

{
−2β

KL∑
I=1

∑
m∈ηI

[1 − δ(x(I) − x(m))]
}

where β is a positive constant, ηI is the set of four or eight pixels nearest to I, and
δ(·) is the Kronecker delta function.)

Suppose that the image is observed in additive white Gaussian noise. That is,
the observed image Y is defined by

Y (I) = µX(I) + N(I), I = 1, . . . , KL,
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where N = {N(I)} is a field of i.i.d. Gaussian random variables, each having
mean zero and variance σ 2. We assume that X and N are independent. The desired
segmentation estimate is the maximum a posteriori (MAP) estimate of X, given an
observed image Y = y; that is,

X̂ = arg max
x

{P(X = x | Y = y)}
= arg max

x
{log(P (Y = y | X = x)) + log(P (X = x))}.

It is shown in Yin et al. (2000) that the MAP segmentation can be accomplished
through use of a diffusion network having energy function

E(v) = 1

2σ 2

KL∑
I=1

〈g(I), v(I)〉 + β

KL∑
I=1

∑
m∈ηI

|v(I) − v(m)|2

+ λ

KL∑
I=1

{〈v(I), u − v(I)〉 + (1 − 〈v(I), u〉)2}
(5.1)

where for each pixel I,

g(I) = [(y(I) − µ1)
2, . . . , (y(I) − µM)2]τ and

v(I) = [v1(I), . . . , vM(I)]τ ,
with v(I) = em (the mth unit vector in R

M) if x(I) = m; and where λ is a ‘large
enough’ constant that the minimum of (5.1) over ([0, 1]M)KL occurs at a point in
the set {e1, . . . , eM}KL.

A diffusion network having the energy function (5.1) was implemented in MAT-
LAB. In the implementation, the {Wα,k} sequences in (2.1) were taken to be inde-
pendent Bernoulli random variables. The function f (·) was set to have the form
given in 4.2. In the energy function defined by (5.1), we set β = 0.3, let ηI consist
of the eight nearest neighbors to pixel I, and set λ = 4.5 (the largest λ value used
in the tests in Yin et al. (2000)). For our test image, we set K = L = 128, M = 2,
{µ1, µ2} = {1, 2}, and σ = 2. Figure 1 shows the true image x on the left and the
observed image y on the right. For this case, a maximum likelihood estimator of
region labels would have an error rate of approximately 41%.

For the first test, we used the fixed step size algorithm defined by (2.2) (with ι

fixed at 0 and A0 = 10). Using the step size bound given in Yin et al. (2000), we set
ε = 0.02. The network was run for 15000 iterations (starting from a randomized
v(·)), at the end of which each v(I) was set to the nearest element of {e1, . . . , eM},
and X̂(I) was set to j if v(I) = ej . The resulting segmentation is shown in Figure
2(a). The pixel error rate in this segmentation is 7.97%. (It might be noted that
Dowell (1999) compared the performance of standard sequential implementations
of simulated annealing (having in verse linear temperature schedules) and fixed
step-size diffusion networks applied to the segmentation of two-region images like
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Figure 1. (a) True image; (b) Noisy observed image.

Figure 2. (a) Segmentation with fixed step size; (b) Segmentation with decreasing step size
and periodic restart.

our test image. In every case, the pixel error rates for the two approaches were
similar (with differences generally equal to a fraction of 1%).)

We then tested a decreasing step size algorithm with periodic restart on the same
image, using coefficients defined as in (4.2) with A0 = 10, n = 5000, and γ = .55.
(To ensure that iterates remained in the hypercube, the aιnk of (4.2) was replaced by
min{.02, 1/(ιn + k)γ }). Again the network was run for a total of 15000 iterations.
The resulting segmentation is shown in Figure 2(b). The pixel error rate in this
segmentation is 6.49%.

Figure 3 is a plot of the pixel error rates vs. iteration number for the two cases,
showing faster convergence with lower final error for the case of decreasing step
size with periodic restart.
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Figure 3. Comparison of pixel error rates.

5.2. RESTORATION AND SEGMENTATION OF A BLURRED AND NOISY IMAGE

In many applications, the observed image is corrupted by both noise and blur. That
is, if the true underlying image is G, then the observed image is

Y = h ∗ G + N, (5.2)

where h(·) is a spatially-invariant blurring filter due, for example, to the imaging
system’s point-spread function; the ‘∗’ denotes convolution; and N is a noise term
(e.g., see Hokland and Kelly (1996)). It is desired to find an estimate of G, given
an observation Y = y; i.e., to perform image restoration. A complicating factor
is that G is usually nonstationary. For example, in medical ultrasound imaging,
G is a diffuse scattering field that can be modelled as independent mean-zero
Gaussian random variables having different variances in different tissue regions
Hokland and Kelly (1996). As shown in that reference, good estimation results can
be obtained for such images by combining restoration and segmentation; that is, by
performing segmentation to identify the regions and accounting for the differing
variances in different regions during the restoration. In this section, we define and
test a diffusion network for restoring and segmenting an image having a model like
that used for medical ultrasound images.

Again let X be a two-region field as in Section 5.1. When the region field
realization is x, we let the true underlying image be given by G(I) = σx(I)Ng(I)

at each pixel I, where {σ 2
1 , σ

2
2 } are the scatterer variances in the two regions and



354 G. YIN AND P. KELLY

Ng is a white Gaussian noise field, independent of X and having mean zero and
unit variance at each pixel. (For simplicity, we do not include the specular scat-
tering term used in the model in Hokland and Kelly (1996).) We assume that the
observed image is obtained by convolving the true image with a blurring filter and
by adding noise N . We further assume that N is also a white Gaussian noise with
mean zero and variance σ 2

N at each pixel, and that N is independent of X and Ng .
From this model, it follows that to find the joint MAP estimates of G and X (i.e.,
joint restoration and segmentation) from an observation y, we need to minimize
the energy function

U(x, g) =
KL∑
I=1

{ 1

2σ 2
N

z(I)2 + ln(σx(I)) + 1

2σ 2
x(I)

g(I)2

+ 2β
∑
m∈ηI

[1 − δ(x(I) − x(m))]} (5.3)

where z(I) = y(I) −∑
m h(I − m)g(m).

To put this in a form suitable for minimization with a diffusion network, define
a vector v(I) = [v1(I), v2(I)]τ for each pixel I. We use v1(·) to represent g(·), as
follows. Assume that σ2 > σ1 and that a N(0, σ 2) random variable is effectively
confined to the range ±4σ . Then set v1(I) = g(I)+4σ2

8σ2
. We let v2(·) govern seg-

mentation by setting v2(I) = x(I) − 1 (so, each v2(I) is either 0 or 1). Then, with
the addition of a constraint term that forces minimization to occur only where each
v2(I) is either 0 or 1, the diffusion network energy function is

E(v) =
KL∑
I=1

{ 1

σ 2
N

[y(I) − 4σ2

∑
m

h(I − m)(2v1(m) − 1)]2

+ [v2(I) ln(r) + 16(2v1(I) − 1)2(r2 − v2(I)(r
2 − 1))]

+ 4β
∑
m∈ηI

(v2(I) − v2(m))2 + λv2(I)[1 − v2(I))}. (5.4)

where r = σ2/σ1.
To test the network performance, we used the same two-region image x as in

Section 5.1, and set σ1 = 1 and σ2 = 4. The resulting diffuse scatterer image
g is shown in Figure 4(a). This image was blurred with a 2D filter correspond-
ing to a point spread function having value 0.7547 at (0, 0); 0.3396 at (0, 1) and
(1, 0); 0.2642 at (0,−1) and (−1, 0); and 0 elsewhere. Gaussian white noise with
σN = 0.25 was then added to the blurred image to give the observed image shown
in Figure 4(b). The observation was input to a fixed step size diffusion network with
energy function (5.4). We again set β = 0.3, λ = 4.5, and A0 = 10. The step size
bound derived in Yin et al. (2000) depends on the maximum energy function gradi-
ent. In this problem, the gradient components corresponding to v1 have much larger
magnitudes than those corresponding to v2. We found that it was most effective to
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use two different step sizes: ε1 = 0.00001 for components of v1 and ε2 = 0.005
for components of v2. The network was run for 12000 iterations (starting with a
randomized v2(·) and with v1(·) derived from setting g(·) = y(·)). At the end of
the run, the restored image was formed by setting Ĝ(I) = 4σ2(2v1(I) − 1) and
the segmented image by setting X̂(I) = 1 + {edge value (0 or 1) nearest to v2(I)}.
Figure 4(c) shows the restored image Ĝ. As a measure of restoration efficacy we
use mean-squared error (MSE) improvement, defined as 10 log10(MSE0/MSEf )

dB, where

MSE0 = 1

KL

KL∑
I=1

[y(I) − g(I)]2, and

MSEf = 1

KL

KL∑
I=1

[Ĝ(I) − g(I)]2. (5.5)

For the restoration in Figure 4(c) the MSE improvement is 6.31 dB.
For comparison, we also ran a network with a decreasing step size for the v2

components, set as min{.005, 1/k0.6} (since the step size for v1 components must
already be very small to keep the iterates in the hypercube, we left it fixed). Figure
4(d) shows the resulting restoration, which has a MSE improvement of 6.45 dB.

Finally, Figure 5(a) shows the segmentation estimate for fixed step size (having
a pixel error rate of 2.15%), while Figure 5(b) shows the segmentation estimate
with the decreasing v2 step sizes (having a pixel error rate of 2.09%).

6. Conclusion

This paper has been devoted to rates of convergence of a class of recursive al-
gorithms for global optimization. As demonstrated, the algorithms are useful for
many image estimation problems. In Yin (1999), we have studied rates of conver-
gence of Monte-Carlo version of simulated annealing algorithms. In that paper,
the rates of convergence is considered for decreasing step-size sequences. The
techniques used in the current paper can be adopted to treat simulated annealing al-
gorithms with constant step size. In this paper, the gradient is assumed to be known
from digital diffusion network aspects. A Monte Carlo version of the algorithm us-
ing a gradient estimator can be constructed and studied. In Lecuyer and Yin (1998),
convergence rate results are derived for a stochastic optimization problem where
the gradient estimator of the performance measure is available and both the bias
and the variance of the estimator depend on the budget devoted to the computation.
This idea may be utilized to study the convergence speed of the global optimization
algorithm in conjunction with the computational budget. In various applications,
one often needs to use projection algorithms or deals with constraints. The result-
ing recursive algorithms are of constrained type as well. Reference Kushner and
Yin (1997) provides extensive discussion on constrained algorithms for stochastic
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Figure 4. (a) Diffuse scattering field; (b) Noisy and blurred observation; (c) Restoration with
fixed step sizes; (d) Restoration with decreasing segmentation step sizes.

Figure 5. (a) Segmentation with fixed step sizes; (b) Segmentation with decreasing segment-
ation step sizes.
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approximation and optimization algorithms with noisy measurements without the
perturbing noise Wn

k . The techniques and ideas can be adopted to study the global
optimization algorithms that we are considering. The rate of convergence result ob-
tained in this paper is in the spirit of asymptotic normality. Alternatively, one may
use large deviations methods to obtain large deviations lower and upper bounds. A
challenging problem that is of foremost importance is to improve the convergence
rate. One of the ideas points in the direction of using Cauchy-type perturbing noise
(without finite moments). However, this requires much more in-depth study and
understanding.
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